ACS Medicinal Chemistry Letters

Inhibitors of the Renal Outer Medullary Potassium Channel

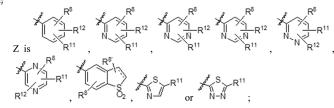
Benjamin Blass*

Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States

Title:	Inhibitors of the renal outer medullary potassium channel			
Patent/Patent Application Number:	WO2015017305A1	Publication date:	Feb 5, 2015	
Priority Application:	US 61/860,270	Priority date:	July 31, 2013	
	US 61/970,102		March 25, 2014	
Inventors:	Tang, H.; Pio, B.; Jiang, J.;	Pasternak, A.; Dong, S.; I	Ferguson, R. D., II; Guo, Z. Z.; Chobanian, H.; Frie, J.; Guo, Y.; Wu, Z.;	
	Yu, Y.; Wang, M.			
Assignee Company:	Merck Sharp & Dohme C	orp		
Disease Area:	Cardiovascular disease	Biological Target:	Renal outer medullary potassium (ROMK) channel (Kir1.l)	
Summary:	The regulation of ion flow across cellular membranes is a critical aspect of a wide range of biological processes. Nature has			
	developed a broad array of ion channels capable of selectively transporting specific ions across membranes in response to a			
	triggering event or signal. Voltage gated potassium channels, for example, open and close in response to changes in the			
	voltage gradient across a cellular membrane. To date, 78 isoforms of voltage gated potassium channels have been			
	identified. The majority are tetrameric, and the four transmembrane monomer subunits of these protein constructs			
	contain six membrane spanning regions that form the walls of the channel. The inwardly rectifying potassium channel			
	Kir1.1, also referred to as the renal outer medullary potassium channel (ROMK), is a member of this family of ion			
	channels and plays a prominent role in kidney function. ROMK is part of the potassium recycling system across the			
	luminal membrane that ensures proper function of the Na ⁺ /K ⁺ /2Cl ⁻ cotransporter in the thick ascending loop of Henle			
	(TALH). In addition, ROMK has a significant impact on potassium secretion in the cortical collecting duct, which is			
	tightly coupled to sodium uptake in this region. This channel has been the focus of significant research efforts, as it has			
	been suggested that selective blockade of ROMK would produce diuretic activity that would have a positive impact on			
	conditions such as hypertension and heart failure. It is also possible that ROMK blockade would lower blood pressure			
	without causing hypokalemia, a potential side effect of conventional diuretics. The present application discloses a series of			
	compounds that selectively block ROMK function and are potentially useful for the treatment of conditions in which			
	diuretic activity would	be beneficial.		

Important Compound Classes:

Definitions:


 Received:
 June 5, 2015

 Published:
 June 19, 2015

ACS Publications © 2015 American Chemical Society

Y is -0- or a bond;

Where ----- is a single or double bond;

R is independently H, alkyl, or halo alkyl;

 R^{1} is H, alkyl, -F, -OR, or $-N(R^{13})(R^{14})$;

 R^2 is H or alkyl optionally substituted by 1–5 halogen atoms or –OR;

R³ is H or alkyl;

 R^4 is H or alkyl optionally substituted by 1–5 halogen atoms or –OR;

 R^5 is H or alkyl optionally substituted by 1–5 halogen atoms or –OR;

or R^4 and R^5 are joined together to represent $-CH_2CH_2-$, $-CH_2NCH_2-$, $-CH_2N(CH_3)CH_2-$, or $-CH_2OCH_2-$;

 R^6 is H, halo, alkyl optionally substituted by 1–5 halogen atoms or –OR, cycloalkyl, or –OR;

or R^6 and R^1 are joined together to represent $-CH_2CH_2O-$;

 R^7 is H, halo, alkyl optionally substituted by 1–5 halogen atoms or –OR, cycloalkyl, or –OR;

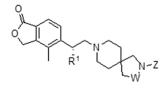
 R^8 is independently H or alkyl;

R^{8'} is H or alkyl;

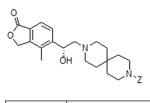
 R^9 is -CN, tetrazolyl, or $-S(O)_2 R^{13}$;

 R^{10} is halo, -OR, alkyl optionally substituted by 1-5 halogen atoms or -OR, -S-alkyl, -N-alkyl, or -O-cyclopropyl; R^{11} is -CN, $-S(O)_2R^{13}$, or optionally substituted heteroaryl (e.g., 1*H*-tetrazolyl, 2*H*-tetrazolyl, 1,2,4-oxadiazole, 4*H*-1,2,3-triazolyl or furanyl) wherein the optional substituent is halogen or alkyl;

 R^{12} is H, halo, alkyl, cycloalkyl, or -OR;


R¹³ is H, alkyl, allyl, or cycloalkyl;

R¹⁴ is H, alkyl, or cycloalkyl;


R¹⁵ independently oxo, -F, -CN, alkyl optionally substituted by 1-5 fluorine atoms or -OR, cycloalkyl, heteroaryl optionally substituted by halogen, -CN, alkyl, or haloalkyl;

a is 1 or 2; b is 0 or 1; n is 0, 1, or 2; o is 1, 2, or 3; and p is 1 or 2

Key Structures:

Evonnlo	R1	W	Z
Example	KI	W	
1	ОН	СО	CN
3	ОН	CH ₂	-CN
4	Н	СО	-CN
9	ОН	CH ₂	
10	ОН	CH ₂	CN
11	ОН	CH ₂	
14	ОН	CH ₂	-CN
79	NH ₂	СО	-CN
81	ОН	CH ₂	

Example	Z
105	-CN
109	
111	

Recent Review Articles:

Biological Assay:

Biological Data:

- 1. Garcia, M. L.; Kaczorowski, G. J. Targeting the inward-rectifier potassium channel ROMK in cardiovascular disease. *Curr. Opin. Pharmacol.* 2014, 15, 1–6.
- 2. Bhave, G.; Lonergan, D.; Chauder, B. A.; Denton, J. S. Small-molecule modulators of inward rectifier K+ channels: recent advances and future possibilities. *Future Med. Chem.* **2010**, *2* (5), 757–774.
- 3. Welling, P. A.; Ho, K. A. Comprehensive guide to the ROMK potassium channel: form and function in health and disease. *Am. J. Physiol.* **2009**, *297* (4), F849–F863.

Thallium flux assay with HEK293 cell	s stably expressing hRC	OMK (hKii	rl.l)
Entry	IC co (nM)	Entry	IC

Entry	$IC_{50}(nM)$	Entry	$IC_{50}(nM)$
1	10.5	14	15
3	10	79	14
4	12	81	10.1
9	14	109	14
10	17	111	9
11	20	105	13

Claims:

22 total claims19 composition of matter claims

3 method claims

AUTHOR INFORMATION

Corresponding Author *Tel: 215-707-1085. E-mail: benjamin.blass@temple.edu.

Notes

The authors declare no competing financial interest.